Baixa mobilidade nas primeiras 24 horas de admissão correlaciona-se a piores desfechos clínicos em pacientes com COVID-19 na UTI: um estudo transversal
Low mobility in the first 24 hours of admission correlates with worse clinical outcomes in COVID-19 patients in the ICU: a cross-sectional study
Darlisson Bueno Paranhos, Raquel Annoni, Luciane Fernanda Rodrigues Martinho Fernandes
Resumo
Introdução: Pacientes com COVID-19 internados em unidades de terapia intensiva (UTI) apresentam níveis reduzidos de mobilidade no momento da admissão. Contudo, a correlação entre o maior nível de mobilidade nas primeiras 24 horas de admissão com desfechos clínicos na UTI ainda é incerto. Objetivo: Investigar a correlação entre o nível de mobilidade nas primeiras 24 horas de admissão na UTI, escore APACHE II, tempo de VM, período de internação na UTI, tempo de internação pós-UTI e a duração total da hospitalização em pacientes com COVID-19 internados em UTI. Métodos: Estudo transversal realizado em uma UTI destinada a pacientes adultos com COVID-19. Foram coletados dos prontuários dados sociodemográficos e clínicos. O nível e mobilidade nas primeiras 24 horas de internação na UTI foi avaliado pelo ICU Mobility Scale (IMS). A correlação entre o nível de mobilidade nas primeiras 24 horas de admissão na UTI e desfechos clínicos foi testada através do teste de Spearman. Resultados: Foram incluídos 192 pacientes. Nas primeiras 24 horas de admissão na UTI, 53,1% dos pacientes apresentaram nenhuma ou mínima atividade, enquanto apenas 3,6% atingiram alta intensidade de mobilidade. O maior nível de mobilidade se correlacionou significativamente com APACHE II (r = -0,369; p < 0,001) e tempo de internação após a alta da UTI (r = -0,361; p = 0,004). Conclusão: Pacientes que apresentam baixo nível de mobilidade nas primeiras 24 horas na UTI estão relacionados a maior gravidade e maior tempo de permanência após UTI.
Palavras-chave
Abstract
Background: COVID-19 patients admitted to intensive care units (ICUs) exhibit reduced mobility levels at the time of admission. However, the correlation between the highest mobility level within the first 24 hours of ICU admission and clinical outcomes in the ICU remains uncertain. Aim: To investigate the correlation between the level of mobility within the first 24 hours of ICU admission, APACHE II score, mechanical ventilation (MV) duration, ICU length of stay, post-ICU hospitalization time, and total hospital stay in COVID-19 patients admitted to the ICU. Methods: A cross-sectional study was conducted in an ICU for adult COVID-19 patients. Sociodemographic and clinical data were collected from medical records. The level of mobility during the first 24 hours of ICU admission was assessed using the ICU Mobility Scale (IMS). The correlation between the level mobility within the first 24 hours of ICU admission and clinical outcomes was tested using Spearman’s test. Results: A total of 192 patients were included. Within the first 24 hours of ICU admission, 53,1% of patients exhibited no or minimal activity, while only 3,6% achieved high-intensity mobility. The highest level of mobility was significantly correlated with APACHE II (r= -0,369; p< 0,001) and post- ICU hospitalization time (r = -0,361; p= 0,004). Conclusion: Patients with low mobility levels within the first 24 hours in the ICU are associated with greater severity and longer post-ICU hospitalization times.
DOI da versão traduzida: https://doi.org/10.47066/2966-4837.2024.0010en
Keywords
Referências
1. Lauxmann MA, Santucci NE, Autrán-Gómez AM. The SARS-CoV-2 coronavirus and the COVID-19 outbreak. Int Braz J Urol. 2020;46(Suppl 1):6-18. http://doi.org/10.1590/s1677- 5538.ibju.2020.s101. PMid:32549071.
2. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345-55. http://doi. org/10.1001/jamainternmed.2020.3539. PMid:32667669.
3. Huang Y, Tan C, Wu J, Chen M, Wang Z, Luo L, et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res. 2020;21(1):163. http://doi. org/10.1186/s12931-020-01429-6. PMid:32600344.
4. Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, et al. Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med. 2020;48(8):e657-65. http://doi.org/10.1097/ CCM.0000000000004411. PMid:32697506.
5. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052-9. http://doi.org/10.1001/ jama.2020.6775. PMid:32320003.
6. Kim L, Garg S, O’Halloran A, Whitaker M, Pham H, Anderson EJ, et al. Risk factors for Intensive Care Unit Admission and in-hospital mortality among hospitalized adults identified through the US coronavirus disease 2019 (COVID-19)- associated hospitalization surveillance network (COVID-NET). Clin Infect Dis. 2021;72(9):e206-14. http://doi. org/10.1093/cid/ciaa1012. PMid:32674114.
7. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med. 2020;383(25):2451. http://doi.org/10.1056/ NEJMcp2009575. PMid:32412710.
8. Gomes GGC, Bisco NCB, Paulo MF, Fabrin SCV, Fioco EM, Verri ED, et al. Perfil epidemiológico da Nova Doença Infecciosa do Coronavírus - COVID-19 (Sars-Cov-2) no mundo: estudo descritivo, janeiro-junho de 2020. Braz J Health Rev. 2020;3(4):7993-8007. http://doi.org/10.34119/ bjhrv3n4-064.
9. Lin D, Liu L, Zhang M, Hu Y, Yang Q, Guo J, et al. Co-infections of SARS-CoV-2 with multiple common respiratory pathogens in infected patients. Sci China Life Sci. 2020;63(4):606-9. http://doi.org/10.1007/s11427-020-1668-5. PMid:32170625.
10. Andrés-Esteban EM, Quintana-Diaz M, Ramírez-Cervantes KL, Benayas-Peña I, Silva-Obregón A, Magallón-Botaya R, et al. Outcomes of hospitalized patients with COVID-19 according to level of frailty. PeerJ. 2021;9:e11260. http://doi. org/10.7717/peerj.11260. PMid:33954054.
11. Jung C, Flaatten H, Fjølner J, Bruno RR, Wernly B, Artigas A, et al. The impact of frailty on survival in elderly intensive care patients with COVID-19: the COVIP study. Crit Care. 2021;25(1):149. http://doi.org/10.1186/s13054-021-03551-3. PMid:33874987.
12. Yang Y, Luo K, Jiang Y, Yu Q, Huang X, Wang J, et al. The impact of frailty on COVID-19 outcomes: a systematic review and meta-analysis of 16 cohort studies. J Nutr Health Aging. 2021;25(5):702-9. http://doi.org/10.1007/s12603-021-1611- 9. PMid:33949641.
13. Paranhos DB, Annoni R, Schujmann DS, Fernandes LFRM. Functional dependence prior to ICU admission is associated with worse clinical and functional outcomes in individuals with COVID-19: a prospective observational study. J Intensive Care Med. 2024;39(5):439-46. PMid:37915228.
14. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Healthspan. 2014;3(1):9. http://doi.org/10.1186/2046-2395-3-9. PMid:25520782.
15. Timenetsky KT, Serpa A No, Lazarin AC, Pardini A, Moreira CRS, Corrêa TD, et al. The Perme Mobility Index: A new concept to assess mobility level in patients with coronavirus (COVID-19) infection. PLoS One. 2021;16(4):e0250180. http:// doi.org/10.1371/journal.pone.0250180. PMid:33882081.
16. Tipping CJ, Bailey MJ, Bellomo R, Berney S, Buhr H, Denehy L, et al. The ICU mobility scale has construct and predictive validity and is responsive. A multicenter observational study. Ann Am Thorac Soc. 2016;13(6):887-93. http://doi. org/10.1513/AnnalsATS.201510-717OC. PMid:27015233.
17. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596):1453-7. http://doi.org/10.1016/S0140- 6736(07)61602-X. PMid:18064739.
18. Kawaguchi YMF, Nawa RK, Figueiredo TB, Martins L, Pires- Neto RC. Perme intensive care unit mobility score and ICU mobility scale: translation into Portuguese and cross-cultural adaptation for use in Brazil. J Bras Pneumol. 2016;42(6):429- 34. http://doi.org/10.1590/s1806-37562015000000301. PMid:28117473.
19. Berney SC, Rose JW, Bernhardt J, Denehy L. Prospective observation of physical activity in critically ill patients who were intubated for more than 48 hours. J Crit Care. 2015;30(4):658-63. http://doi.org/10.1016/j.jcrc.2015.03.006. PMid:25813549.
20. Nawa RK, Serpa A No, Lazarin AC, da Silva AK, Nascimento C, Midega TD, et al. Analysis of mobility level of COVID-19 patients undergoing mechanical ventilation support: a single center, retrospective cohort study. PLoS One. 2022;17(8):e0272373. http://doi.org/10.1371/journal. pone.0272373. PMid:35913973.
21. Anekwe DE, Koo KKY, de Marchie M, Goldberg P, Jayaraman D, Spahija J. Interprofessional survey of perceived barriers and facilitators to early mobilization of critically Ill patients in Montreal, Canada. J Intensive Care Med. 2019;34(3):218- 26. http://doi.org/10.1177/0885066617696846. PMid:28355933.
22. Yamada K, Kitai T, Iwata K, Nishihara H, Ito T, Yokoyama R, et al. Predictive factors and clinical impact of ICU-acquired weakness on functional disability in mechanically ventilated patients with COVID-19. Heart Lung. 2023;60:139-45. http:// doi.org/10.1016/j.hrtlng.2023.03.008. PMid:37018902.
23. Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ, et al. Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med. 2014;42(5):1178-86. http://doi.org/10.1097/ CCM.0000000000000149. PMid:24351373.
24. Sibilla A, Nydahl P, Greco N, Mungo G, Ott N, Unger I, et al. Mobilization of mechanically ventilated patients in Switzerland. J Intensive Care Med. 2020;35(1):55-62. http:// doi.org/10.1177/0885066617728486. PMid:28847238.
25. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. http:// doi.org/10.1016/S0140-6736(20)30183-5. PMid:31986264.
26. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-4. http://doi.org/10.1001/ jama.2020.4326. PMid:32191259.
27. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637-53. http://doi. org/10.1007/s00134-020-05944-4. PMid:32076765.
28. Sheehy LM. Considerations for postacute rehabilitation for survivors of COVID-19. JMIR Public Health Surveill. 2020;6(2):e19462. http://doi.org/10.2196/19462. PMid:32369030.
29. Biehl M, Sese D. Post-intensive care syndrome and COVID-19: implications post pandemic. Cleve Clin J Med. 2020:1-3. http://doi.org/10.3949/ccjm.87a.ccc055.
30. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill patients. Intensive Care Med. 2008;34(7):1188-99. http://doi.org/10.1007/s00134-008- 1026-7. PMid:18283429.
31. Wang YT, Lang JK, Haines KJ, Skinner EH, Haines TP. Physical rehabilitation in the ICU: a systematic review and meta-analysis. Crit Care Med. 2022;50(3):375-88. http://doi. org/10.1097/CCM.0000000000005285. PMid:34406169.
32. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202(6):812-21. http://doi.org/10.1164/ rccm.202005-1583OC. PMid:32584597.
33. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-7. http://doi. org/10.1038/s41591-020-0868-6. PMid:32327758.
34. Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2022;101:93-135. PMid:34973396.
35. Frontera JA, Yang D, Lewis A, Patel P, Medicherla C, Arena V, et al. A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications. J Neurol Sci. 2021;426:117486. http://doi.org/10.1016/j.jns.2021.117486. PMid:34000678.
36. Johnsen S, Sattler SM, Miskowiak KW, Kunalan K, Victor A, Pedersen L, et al. Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Res. 2021;7(3):00205- 02021. http://doi.org/10.1183/23120541.00205-2021. PMid:34345629.
37. Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical, cognitive and mental health impacts of COVID-19 following hospitalisation: a multi-centre prospective cohort study. Lancet Respir Med. 2021;9(11):1275-87.
38. Ghosn J, Piroth L, Epaulard O, Le Turnier P, Mentré F, Bachelet D, et al. Persistent COVID-19 symptoms are highly prevalent 6 months after hospitalization: results from a large prospective cohort. Clin Microbiol Infect. 2021;27(7):1041.e1-4. http://doi.org/10.1016/j. cmi.2021.03.012. PMid:34125067.
39. Miskowiak K, Johnsen S, Sattler S, Nielsen S, Kunalan K, Rungby J, et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46:39- 48. http://doi.org/10.1016/j.euroneuro.2021.03.019. PMid:33823427.
40. Neville TH, Hays RD, Tseng CH, Gonzalez CA, Chen L, Hong A, et al. Survival after severe COVID-19: long-term outcomes of patients admitted to an Intensive Care Unit. J Intensive Care Med. 2022;37(8):1019-28. http://doi. org/10.1177/08850666221092687. PMid:35382627.
Submetido em:
15/01/2025
Aceito em:
13/03/2025